SILICONE BRIDGE JOINT SEALER Effective: August 1, 1995 Revised: October 15, 2011 <u>Description.</u> This work shall consist of furnishing all labor, equipment and materials necessary to install the silicone joint sealer as shown on the plans and as specified herein. When specified, a polymer concrete nosing compatible with the silicone sealant as required by the sealant manufacturer shall be installed. The minimum dimensions for a polymer concrete nosing cross section are 1 1/2 in. (40 mm) deep by 3 1/2 in. (90 mm) wide. The polymer concrete shall be furnished and installed according to the Special Provision for "Polymer Concrete". ## Materials: (a) <u>Silicone Joint Sealer</u>. The silicone joint sealer shall cure in less than one week, and shall accommodate typical bridge movements and traffic within 8 hours. The sealant shall be self-leveling, cold applied, and two component. The sealant, upon curing, shall demonstrate resilience, flexibility and resistance to moisture and puncture. The sealant shall also demonstrate excellent adhesion to portland cement concrete, polymer concrete and steel over a range of temperatures from -30 to 130°F (-34 to 54°C) while maintaining a watertight seal. The sealant shall not contain any solvents or diluents that cause shrinkage or expansion during curing. In addition, acid cure sealants will not be permitted. The date of manufacture shall be provided with each lot. Materials twelve months old or older from the date of manufacture will not be accepted. The manufacturer shall certify that the sealant meets or exceeds the following test requirements before installation begins. The Department reserves the right to test representative samples from material proposed for use. ## **Physical Properties:** Each component as supplied: Specific Gravity (ASTM D 1475) 1.2-1.4 Extrusion Rate (ASTM C 1183) 200 - 600 grams per minute Durometer Hardness, "00" (ASTM C 661) 40-80 $(32^{\circ}F \text{ and } 77 \pm 3^{\circ}F (0^{\circ} \text{ and } 25^{\circ}C \pm 1^{\circ}C))$ Accelerated Weathering (ASTM C 793) No chalking, cracking or bond loss after 5,000 hours. After Mixing: Tack Free Time (ASTM C 679) 60 minutes max. <u>Upon Complete Cure</u>: (ASTM D 5329) Joint Elongation (Tensile Adhesion) 600% min Joint Modulus 3-15 psi (21-103 kPa) @ 100% elongation ¹Modified; Sample cured 7 days at 77 ± 2°F (25±1°C) 50 ± 5% relative humidity (b) <u>Backer Rod</u>. The backer rod shall conform to ASTM D 5249, Type 3. #### **CONSTRUCTION REQUIREMENTS** <u>General.</u> The Contractor shall furnish the Engineer with the manufacturer's product information and installation procedures at least two weeks prior to installation. When placing the silicone against concrete, the concrete surface shall be dry. For newly placed concrete, the concrete shall be fully cured and allowed to dry out a minimum of seven additional days prior to placement of the silicone. Cold, wet, inclement weather will require an extended drying time. ## (a) Surface Preparation: (1) Sandblasting. Both faces of the joint shall be sandblasted. A separate pass for each face for the full length of the joint and to the design depth of the center of the backer rod will be required. The nozzle shall be held at an angle of 30-90 degrees to the joint face, at a distance of 1-2 in. (25-50 mm). For portland cement concrete and polymer concrete surfaces, sandblasting will be considered acceptable when both joint faces have a roughened surface with clean, exposed aggregate. The surface shall be free of foreign matter or plastic residue. For steel surfaces, sandblasting will be considered acceptable when the steel surfaces have been cleaned to an SSPC-SP10 degree of cleanliness. After sandblasting is completed, the joint shall be cleaned of debris using compressed air with a minimum pressure of 90 psi (620 kPa). The air compressor shall be equipped with traps to prevent the inclusion of water and/or oil in the air line. (2) Priming. Priming shall be according to the manufacturer's instructions. This operation will immediately follow sandblasting and cleaning, and will only be permitted to proceed when the air and substrate temperatures are at least 41°F (5°C) and rising. Sandblasting, priming and sealing shall be performed on the same day. Surfaces to be primed shall be primed using a brush applied primer. For steel surfaces, when specified per the manufacturer's instructions, the primer shall be allowed to cure before proceeding. The minimum cure time shall be extended according to the manufacturer's recommendations when the substrate temperature is below 60°F (15°C). The primer shall be supplied in original containers and shall have a "use-by" date clearly marked on them. Only primer, freshly poured from the original container into clean pails will be permitted. The primer shall be used immediately. All primer left in the pail after priming shall be disposed of and shall not be reused. # (b) Joint Installation: - (1) Backer Rod Placement. The backer rod shall be installed to a uniform depth as specified on the plans and as recommended by the manufacturer. All splices in the backer rod shall be taped to prevent material loss during sealing. The backer rod shall be installed to within 1/8 in. (3 mm) tolerance prior to sealing. - (2) Sealant Placement. The sealant shall be 1/2 in. (13 mm) thick within ± 1/8 in. (3 mm) tolerance as measured in the center of the joint at the thinnest point. The sealant thickness shall be measured during installation every ±2 ft. (±600 mm). Adjustments to correct sealant thickness to within tolerance shall be made immediately before the sealant begins to set up. Sealant placement will only be permitted when the air and substrate temperatures are above 41 °F (5 °C) and 5°F (2.8°C) above the dew point. The joint shall be kept clean and dry during sealing. If the joint becomes wet and/or dirty during sealing, the operation shall stop until the joint has been restored to a clean and dry state. Sealing shall be performed using a pneumatic gun approved by the sealant manufacturer. Prior to sealing, the gun shall be inspected to insure that it is in proper working order and that it is being operated at the recommended air pressure. The gun shall demonstrate proper mixing action before sealant is placed in the joint. All unmixed sealant found in the joint shall be removed and replaced. After the Engineer has determined that the pneumatic gun is functioning properly, the joint shall be sealed to the thickness and depth as shown on the plans. The sealant shall achieve initial set before opening the joint to traffic. End of seal treatment at vertical faces of curbs, sidewalks or parapets shall be as recommended by the manufacturer and as shown on the plans. Sealant placed incorrectly shall be removed and replaced by the Contractor. (3) Field Testing. A minimum of one joint per bridge per joint configuration will be tested by the Engineer by performing a "Pull Test". The sealant shall cure for a minimum of 24 hours before testing. The locations for the tests will be determined by the Engineer. The tests will be performed per the manufacturer's instructions. As part of the test, the depth and thickness of the sealant will be verified. All joint system installations failing to meet the specifications shall be removed and replaced, by the Contractor, to the satisfaction of the Engineer. In addition, the Pull Test is a destructive test; the Contractor shall repair the joint after completion of the test per the manufacturer's instructions. <u>Method of Measurement</u>. The installed joint sealer will be measured in feet (meters) along the centerline of the joint. <u>Basis of Payment</u>. The silicone joint sealer measured as specified will be paid for at the contract unit price per foot (meter) for SILICONE JOINT SEALER, of the size specified. When a polymer concrete nosing is specified it shall not be included in this item but will be paid for according to the Special Provision for "Polymer Concrete".